Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biol. Res ; 48: 1-10, 2015. ilus, graf
Article in English | LILACS | ID: biblio-950800

ABSTRACT

BACKGROUND: The antiepileptic drugs carbamazepine and gabapentin are effective in treating neuropathic pain and trigeminal neuralgia. In the present study, to analyze the effects of carbamazepine and gabapentin on neuronal excitation in the spinal trigeminal subnucleus caudalis (Sp5c) in the medulla oblongata, we recorded temporal changes in nociceptive afferent activity in the Sp5c of trigeminal nerve-attached brainstem slices of neonatal rats using a voltage-sensitive dye imaging technique. RESULTS: Electrical stimulation of the trigeminal nerve rootlet evoked changes in the fluorescence intensity of dye in the Sp5c. The optical signals were composed of two phases, a fast component with a sharp peak followed by a long-lasting component with a period of more than 500 ms. This evoked excitation was not influenced by administration of carbamazepine (10, 100 and 1,000 µM) or gabapentin (1 and 10 µM), but was increased by administration of 100 µM gabapentin. This evoked excitation was increased further in low Mg²+ (0.8 mM) conditions, and this effect of low Mg²+ concentration was antagonized by 30 µM DL-2-amino-5-phosphonopentanoic acid (AP5), a N-methyl-D-as-partate (NMDA) receptor blocker. The increased excitation in low Mg²+ conditions was also antagonized by carbamazepine (1,000 µM) and gabapentin (100 µM). CONCLUSION: Carbamazepine and gabapentin did not decrease electrically evoked excitation in the Sp5c in control conditions. Further excitation in low Mg²+ conditions was antagonized by the NMDA receptor blocker AP5. Carbamazepine and gabapentin had similar effects to AP5 on evoked excitation in the Sp5c in low Mg²+ conditions. Thus, we concluded that carbamazepine and gabapentin may act by blocking NMDA receptors in the Sp5c, which contributes to its anti-hypersensitivity in neuropathic pain.


Subject(s)
Animals , Rats , Trigeminal Neuralgia/drug therapy , Trigeminal Nucleus, Spinal/drug effects , Carbamazepine/pharmacology , Cyclohexanecarboxylic Acids/pharmacology , Voltage-Sensitive Dye Imaging , gamma-Aminobutyric Acid/pharmacology , Amines/pharmacology , Anticonvulsants/pharmacology , Trigeminal Neuralgia/physiopathology , Trigeminal Nucleus, Spinal/physiopathology , Action Potentials/drug effects , Action Potentials/physiology , Afferent Pathways/drug effects , Afferent Pathways/physiology , Rats, Wistar , Gabapentin , Animals, Newborn
2.
Biol. Res ; 40(3): 339-346, 2007. graf
Article in English | LILACS | ID: lil-481311

ABSTRACT

Morphine is often used in cancer pain and postoperative analgesic management but induces respiratory depression. Therefore, there is an ongoing search for drug candidates that can antagonize morphine-induced respiratory depression but have no effect on morphine-induced analgesia. Acetylcholine is an excitatory neurotransmitter in central respiratory control and physostigmine antagonizes morphine-induced respiratory depression. However, physostigmine has not been applied in clinical practice because it has a short action time, among other characteristics. We therefore asked whether donepezil (a long-acting acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease) can antagonize morphine-induced respiratory depression. Using the anesthetized rabbit as our model, we measured phrenic nerve discharge as an index of respiratory rate and amplitude. We compared control indices with discharges after the injection of morphine and after the injection of donepezil. Morphine-induced depression of respiratory rate and respiratory amplitude was partly antagonized by donepezil without any effect on blood pressure and end-tidal C0(2). In the other experiment, apneic threshold PaC0(2) was also compared. Morphine increased the phrenic nerve apnea threshold but this was antagonized by donepezil. These findings indicate that systemically administered donepezil partially restores morphine-induced respiratory depression and morphine-deteriorated phrenic nerve apnea threshold in the anesthetized rabbit.


Subject(s)
Animals , Male , Rabbits , Cholinesterase Inhibitors/pharmacology , Indans/pharmacology , Morphine/antagonists & inhibitors , Piperidines/pharmacology , Respiration/drug effects , Depression, Chemical , Phrenic Nerve/drug effects
3.
Biol. Res ; 39(2): 321-330, 2006. ilus, tab
Article in English | LILACS | ID: lil-432434

ABSTRACT

Nicotine exposure is a risk factor in several breathing disorders Nicotinic acetylcholine receptors (nAChRs) exist in the ventrolateral medulla, an important site for respiratory control. We examined the effects of nicotinic acetylcholine neurotransmission on central respiratory control by addition of a nAChR agonist or one of various antagonists into superfusion medium in the isolated brainstem-spinal cord from neonatal rats. Ventral C4 neuronal activity was monitored as central respiratory output, and activities of respiratory neurons in the ventrolateral medulla were recorded in whole-cell configuration. RJR-2403 (0.1-10mM), a4b2 nAChR agonist induced dose-dependent increases in respiratory frequency. Non-selective nAChR antagonist mecamylamine (0.1-100mM), a4b2 antagonist dihydro-b-erythroidine (0.1-100mM), a7 antagonist methyllycaconitine (0.1-100mM), and a-bungarotoxin (0.01-10mM) all induced dose-dependent reductions in C4 respiratory rate. We next examined effects of 20mM dihydro-b-erythroidine and 20mM methyllycaconitine on respiratory neurons. Dihydro-b-erythroidine induces hyperpolarization and decreases intraburst firing frequency of inspiratory and preinspiratory neurons. In contrast, methyllycaconitine has no effect on the membrane potential of inspiratory neurons, but does decrease their intraburst firing frequency while inducing hyperpolarization and decreasing intraburst firing frequency in preinspiratory neurons. These findings indicate that a4b2 nAChR is involved in both inspiratory and preinspiratory neurons, whereas a7 nAChR functions only in preinspiratory neurons to modulate C4 respiratory rate.


Subject(s)
Animals , Rats , Neurons/physiology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/physiology , Respiratory Center/physiology , Animals, Newborn , Aconitine/analogs & derivatives , Aconitine/pharmacology , Bungarotoxins/pharmacology , Dihydro-beta-Erythroidine/pharmacology , Membrane Potentials , Mecamylamine/pharmacology , Neurons/drug effects , Rats, Wistar , Receptors, Nicotinic/drug effects , Respiratory Center/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL